Inr. J. Sofids Structures Vol 34, No. 14, pp. 1735 1749, 1997
¢ 1997 Elsevier Science Ltd
7 Pergamon All rights reserved. Printed in Greal Britain

0020 7683 97 $17.00 -+ .00
PIT: S0020-7683(96)00119-9

STABILITY AND BIFURCATION OF FINITE
DEFORMATIONS OF ELASTIC CYLINDRICAL
MEMBRANES—PART [. STABILITY ANALYSIS

YI-CHAO CHEN
Department of Mechanical Engineering. University of Houston. Houston, TX 77204-4792.
U.SA.

(Received 31 October 1995 ¢ in revised form 10 June 1996)

Abstract - The stability of an inflated and extended cylindrical elastic membrane is studied by using
an energy stability criterion. Three types of loading devices are considered. that control the internal
pressure, the mass of enclosed gas. and the volume of enclosed fluid, respectively. Four boundary
conditions are considered for different end clamping conditions. The stability conditions are derived
and compared for twelve combinations of these loading devices and boundary conditions. ¢ 1997
Elsevier Science Lid.

1. INTRODUCTION

The stability and bifurcation of inflated cylindrical elastic membranes have been studied by
a number of authors using the theory of nonlinear elasticity. A specially interesting feature
associated with this problem is the phenomenon of buiging of the membranous tube during
the inflation. This phenomenon is often viewed as the onset of instability. Some authors
believe that it also represents non-cylindrical solutions bifurcating from the cylindrical
solution branch.

Various criteria have been used to derive conditions for stability and bifurcation. A
precise and universally accepted criterion for stability does not seem to exist, forcing
researchers to employ criteria that are applicable only to special classes of systems. On the
other hand. while a precise definition of bifurcation of solution branches is available, a
complete bifurcation analysis often presents great mathematical difficulties, and sometimes
a less precise definition 1s used to ease the analysis. To add confusion. stability criteria are
sometimes confounded with bifurcation criteria, and vice versa. It is not rare to find in
published work that a bifurcation is claimed from onset of instability, and that instability
is concluded from the existence of a bifurcation. As an example, the existence of non-trivial
solutions to the linearized equilibrium equations has been taken by some as the condition
for onset of instability and for the existence of bifurcation.

One of the purposes of this two-part paper is to demonstrate the distinctions and
connections of instability and bifurcation for the inflation of cylindrical membranes.
Although connections do occur between instability and bifurcation. they are after all two
totally different phenomena. By using an energy stability criterion and the precise definition
of bifurcation, we derive and compare the stability conditions and bifurcation conditions,
as well as their relations to the bulging phenomenon. General discussions of the relation
between stability and bifurcation can be found in Ogden (1984) and Beatty (1987).

A second purpose of the paper is to study the dependence of the stability and bifurcation
conditions on the type of loading devices and boundary conditions. Inflation experiments
can be carried out by using a variety of laboratory apparatus. and may display different
kinds of instabilities and bifurcations, of which bulging is but one example. In practice. this
analysis is useful for designing an inflation experiment when one wishes to either defer or
promote instability and bifurcation.

The paper is divided into two parts. Part [ is devoted to stability analysis. and part Il
to bifurcation analysis.
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Many have made contributions to the study of the stability of cylindrical deformations
of inflated cylindrical membranes. Among others, Cornelinssen and Shield (1961) studied
the stability of cylindrical deformations of an elastic membrane with the controlled internal
pressure and end displacements. They used a dynamic stability criterion, as well as a static
stability criterion. The former criterion is based on the linearization of the equations of
motion about the finite cylindrical deformation, and the latter on the linearization of the
equations of equilibrium.

Another static stability criterion was employed by Shield (1971, 1972) to study the
same problem. This criterion asserts that instability occurs when a certain potential energy,
measured from the equilibrium configuration, ceases to be positive definite. Shield found
the stable region by determining its boundary where the potential energy becomes semi-
definiie. This essentially leads to the linearized equations of equilibrium, based on which
the earlier static stability criterion used by Cornelinssen and Shield (1961) is defined. Shield
considered three different loading devices that control the internal pressure, the mass of an
enclosed gas. and the volume of an enclosed incompressible fluid., respectively. He also
considered two types of boundary conditions: one with controlied end displacements, and
the other with controlled radial end displacements.

To study the progression of the bulge in an elastic tube during inflation, Yin (1977)
proposed a model in which the tube with a fully developed bulge consists of cylindrical
parts of different radii joined by non-uniformly deformed transition sections. As inflation
continues, the shape of each section remains unchanged ; a transition section merely moves
so that the cylindrical section of larger radius grows in length. Yin showed that under certain
constitutive assumptions. this configuration has a lower total energy than a cylindrical
configuration, provided the length of the tube is sufficiently large.

Kyriakides and Chang (1991) carried out a detailed experimental and numerical study
of the initiation and propagation of a bulge in an elastic tube inflated by pumping in
water. Their results agree qualitatively with Yin’s model. The fully developed bulge has an
approximately cylindrical shape and grows. as inflation continues, in length with little
growth in radius.

In Part I of this paper, we use an energy stability criterion to study the stability of
cylindrical deformations of an elastic membrane under various loading devices and bound-
ary conditions. The criterion asserts that a deformation is stable if it is a local minimizer of
the total energy. This criterion is similar to but weaker than that used by Shield (1971,
1972). The present criterion does not require strict minima at stable deformations, nor that
the quadratic energy be positive-definite. In particular, it does not regard as being unstable
those deformations that are usually considered to be neutrally stable. In Section 2, we
formulate the minimization problem. The equations of equilibrium are derived as the first
variation condition. Three types of loading devices and four boundary conditions are
introduced. In Section 3, the equations of equilibrium are reduced for cylindrical defor-
mations. The dependences of the state variables on the control variables are examined for
various cases. Section 4 is devoted to stability analyses for twelve cases resulted from the
combinations of the three loading devices and four boundary conditions. In each case, we
derive the stability conditions by solving the integral inequality that is deduced from the
second variation condition. The relation between the stability condition and the state
variable-control variable dependence is discussed. Finally, a comprehensive comparison is
made of the stability conditions for various cases.

2. BASIC EQUATIONS

We consider an elastic membrane that has a circular cylindrical shape with radius R
and length L in a reference configuration. Let (R, ®. Z) and (r, 8, ) be cylindrical material
and spatial coordinates, respectively. We shall consider the class of axisymmetric defor-
mations, that can be expressed by

r=r(Z). 0=0. -=:(Z), Ze[0.L]. ()

where r(Z) and z(Z) are smooth functions with z” > ). Here and henceforth, a prime denotes
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the derivative with respect to Z. The principal stretches of an axisymmetric deformation are
given by

- r Z) - /2 2 2
(L) =—p=. w12y = (D) + (2] (2)

The membrane is assumed to be homogencous and isotropic in the reference con-
figuration. Its constitutive relation is described by a strain-energy function W(4,, 4,), whose
value corresponds to the strain energy per unit area in the reference configuration. The
strain energy stored in the deformed membrane is then given by

E, = 2an W, . i) dZ. (3)

)

The membrane is deformed under the action of a pair of axial forces f applied at the
ends and internal pressure supplied by a loading device with a control variable u. The total
potential energy of the loads is

I8

E, = ¢V, u)—f( odZ. 4)

Jo

Here it has been assumed that the potential energy ¢ associated with the internal pressure
depends on the parameter u and the volume V enclosed by the deformed membrane

L
V=n| rzdZ. (5)

ot
If the loading device controls the internal pressure, the potential function ¢ takes the form

p(V.) = —Vu (6)
with u representing the controlled pressure. If, instead. the loading device controls the mass

of a gas enclosed in the membrane, the potential function ¢ represents the Helmholtz free
energy of the gas, which for an ideal gas is given by

I/,,y
GV ) = —kuln;« (7

where k is a positive gas constant, and p now represents the mass of the enclosed gas. In
general, we assume, in accordance with basic principles of thermodynamics, that

¢ 20, ¢y, <O, (8)
where the subscripts of ¢ denote the partial derivative.
The membrane could also be inflated by an incompressible fluid, its amount being

controlled by the loading device. In this case. the potential of internal pressure remains
constant for each u, and we can take, without loss of generality.

¢V ) =0. )

while on the deformed volume V is now imposed a constraint of the form
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V= p (10)

4 this time representing the controlled volume of the fluid.

Four types of boundary conditions will be considered. The first is a free end boundary
condition, that imposes no restriction on the deformation at the boundary. The term “free”
is used here in kinematical sense, and does not imply that the ends are traction free. The
second is an axial displacement boundary condition, in which the axial deformation at the
boundary is prescribed by

20) =0, =(L) ==z, (11)

and the radial deformation at the boundary is not prescribed. The third is a radial dis-
placement boundary condition, which specifies the radial deformation at the boundary as

#0) = r(L) =F, (12)

but imposes no restrictions on the axial deformation. The fourth is a fixed end boundary
condition which specifies both the axial and radial deformations at the boundary by (11)
and (12). These four boundary conditions are schematically illustrated in Fig. 1.

The total energy of the system is given by

E=E+E,. (13)

By the energy stability criterion, a stable equilibrium deformation minimizes the total
energy in the class of all deformations that satisfy the given boundary condition, and, if
applicable, the constraint (10). The first variation condition of this minimization problem
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Fig. 1. Four boundary conditions.
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leads to the following equations of equilibrium

Rr/ VV: ’
W, — - —prz' =0,

A

2nR"W,

/i3

—f—npr- = 0. (14

where the subscript i of W denotes the partial derivative with respect to 4. The cor-
responding boundary conditions are

r(OYW2(£,(0), 2:(0)) = r (LYW (4 (L). 2:(L)) = 0 (15)

for the free ends, (11) and (15) for the axial displacement controlled ends, (12) for the
radial displacement controlled ends. and (11) and (12) for the fixed ends. For the axial
displacement controlled ends and the fixed ends. the axial force f cannot be prescribed. and
the second term on the right-hand side of (4) can be taken to be zero. with fin (14), being
a constant of integration which is to be determined by the boundary conditions (11). When
the potential function ¢ is of the form (6) or (7). the internal pressure p in (14) 1s given by

p=—0,. (16)

On the other hand. when the deformed volume is controlled, the internal pressure p
corresponds to a Lagrange multiplier. which is to be determined by the equations of
equilibrium (14) and the constraint (10).

3. CYLINDRICAL DEFORMATIONS

A deformation is cylindrical if
HZ) = Rey. () =s.7. (17

with constant principal stretches /, and 4. along the length. The corresponding deformed
volume is

V=naR Lii’,. (18)
For such a deformation, the equations of equilibrium (14) reduce to algebraic equations

W’] ’*pR/~.|/~.3 = O.
2nRW,~f~nmpR-77 = 0. (19)

As the control variables ;¢ and f (p and = for the axial displacement controlled ends
and the fixed ends) vary in a continuous manner., we assume the existence of a family of
cylindrical deformations

(Zy = 2@ ) rs = 2o f ) OF (2 = 2 2). 2 = 2a(. D)), (20

that depend continuously on the control variables. Here. the same notation has been used
for different functions. Specifically, for free ends and radial displacement controlled ends,
function ~,(u.f) and Z,(u.f) in (20) satisfy (18). (19), and either (10) or (16), depending
on the type of the loading device. On the other hand. for axial displacement controlled ends
and fixed ends, functions 7,(u. 2) and /,(u, 7) in (20) satisfy (18), (19),. either (10) or (16),
and the boundary condition
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: 2D

B~y

£, 2) =

The boundary condition (15) is trivially satisfied by the cylindrical deformation (17). In the
cases where the radial displacement boundary condition (12) applies, we shall choose

F=Ri(u,f) orF= Ri(u2) (22)

to satisfy the boundary condition. Such a choice, with the boundary deformation depending
on the control variables, appears artificial, and is adopted only to support cylindrical
deformations. Nevertheless, we feel that this idealization provides a reasonable approxi-
mation to load-independent displacement boundary conditions for large L. and that
the corresponding solutions could capture important features of those for more realistic
boundary conditions, such as fixing the radial deformation at the value in the reference
configuration.

[t is interesting to examine how the state variables A,, A,, ¥ and p depend on the control
variables u and for = for cylindrical deformations, and the connection of such dependences
with stability conditions. In the remainder of this section, we derive a few relations of
special interest for further reference.

When the axial force and the internal pressure or the mass of the enclosed gas are
controlled, the internal pressure p in (19) is given by (16). By substituting (20) into (19)
and differentiating with respect to g and /, we find, formally, the derivatives of 4, and A,
with respect to u and £. In particular, we have

(:L _ ).%(a, +4Las) ’ 23)
cf 2nRlaas—a + Las(a, —4a, +4a,))
where
a, =W =i W, a = W= W, ay = i3 W,
Rz/?l- W: 1 3442
ay,=———. d; =3RRI 50,,. (24)
/s 2

Taking the derivatives of (16) and (18) with respect to y, and using the previous results, we
find that

cV NRBL/:TZ%(CI] —4a, +4az)¢w cp (0103_05)(1)»;1

cp 2[a,a; — a3+ Las(a, —4a- +4a3)]‘ 5 a a,a,—ai+ Las(a, —4a, +4a3)'
(25)

When the axial force and the volume of the enclosed fluid are controlled, we can
eliminate p in (19) and supplement the resulting equation with (10), F being given by (18).
Performing the same analysis as described above, we find that

Cin 23 ép 2a,a; —a3)

of  mR(a,—4a;+4a:)’ Cp gRYLAYAl(a, —4ar +das)

(26)

When the axial displacements of ends are controlled, 4, and 4, are functions of ¢ and
z. For the pressure or mass control, we differentiate (19), and (21) with respect to ¢ and =z
to find the derivatives of 4, and 4,. In particular,
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8’\/“'1 — Ri?)'ld)l’p' (27)
ou a,+4Las
Using this, (18), (16) and (19),, we also have
cv 2aR LIy, (;p _ ﬁglfbl,,
u a +4Las T u a,+4La’
(;: 2nR[a,a; —a3 + Las(a, qug +4a;,)]' (28)

Bef Lii(a, +4Lay)

Finally, when the axial displacements of ends and the volume are controlled. we
differentiate (10) and (21) with respect to x and = to find the derivatives of ~, and 4,, and
further, use (19) to find

(;p_ a, Q'_nR(a174a3 +4ay) (29)
cu 2nRYLM 2L/3 '

4. STABILITY OF CYLINDRICAL DEFORMATIONS

Before we get into detailed stability analyses, some general observations are in order,
in regard to the relations of the stability conditions of various experiments. First, the
function (6) defines a sub-potential of the function (7) (or of any potential function that
satisfies (8)) in the sense that the variation of the function (7) due to a disturbance of
volume from an equilibrium deformation is bounded below by the variation of the function
(6) due to the same disturbance. As a result, an equilibrium deformation that minimizes
the total energy under pressure control also minimizes the total energy under mass control.
That is, a deformation that is stable under pressure control is also stable under mass control.
In other words, the experiment of mass control is more stable than that of pressure control.

Further, the volume constraint (10) defines a sub-class of all possible disturbances
from an equilibrium deformation. Since the value of the potential function ¢(V,x) does
not change in this sub-class of disturbances. the stability condition of an equilibrium
deformation under volume control would be the same as that under mass control (or
pressure control) with additional kinematic constraint (10). Such a constraint renders a
smaller class of admissible deformations and therefore makes the equilibrium deformation
more stable. As the result, the experiment of volume control is more stable than those of
mass control and pressure control.

By the same argument. the displacement boundary condition (11) or (12) imposes a
kinematic constraint upon the class of admissible deformations and consequently tends to
stabilize the equilibrium state. Thus, an experiment of controlling either the axial or radial
displacements of ends is more stable than that of free ends. Similarly, an experiment of
fixing ends with the boundary conditions (11) and (12) is more stable than those of other
boundary conditions.

The analyses in the sequel will provide analytic verification of the above observations,
as well as additional results, that are not intuitively obvious, concerning the comparison of
stabilities of various experiments.

An equilibrium deformation is locally stable if it is a relative minimizer of the total
energy in a neighborhood of the deformation. A necessary condition for local stability is
that the second variation of the total energy be positive semi-definite. For an equilibrium
cylindrical deformation, this condition states that
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! 2w, 2w, > 4w, . . 2RW,
— N (AW — e 2R Wt Ty | dZ
o R R/, A As

1 2
+rR 2, U (2).3u+R/i,v’)dZ} >0 (30)
(

)
for all smooth functions « and ¢ that satisfy one of the following boundary conditions :

W.u(0) = W.u'(L) =0 forfreeends; 31

Wou(0) = Wyou' (L) =v(0) = (L) =0 for axial displacement controlled ends; (32)

u(0) = u(L) =0 for radial displacement controlled ends; (33)

u(0) = u(L) = v(0) = (L) =0 for fixed ends. (34)

In the case of volume control. « and r also need to satisfy the constraint

L
J (2/2u+ R ) dZ = 0. (35)

)

We note that a strict inequality version of (30) gives a sufficient condition for local stability.
Inequality (30) can be solved by minimizing the left-hand side in » and ¢’, subject to a
normalization condition. For convenience, we rewrite inequality (30) as

L

i
J (a, 07 +2a-0t" +a0° +ai’?)dZ +as [J
(

(2i+1) dz]ﬁ >0, (36)
) 0
where

U=/-u. U= Rar, (37)

and the coefficients «; are given in (24). The boundary conditions (31)-(34) remain
unchanged for 4 and ¢, while the constraint (35) becomes

I3
[ (2i+¢)dZ = 0. (38)

)

Y

Animmediate observation is that necessary for inequality (36) to hold are the following
conditions

ay =2 0. a, =0. (39)

Our task now is to find additional conditions that, along with (39), are equivalent to (36).
Inequality (36) holds if and only if it holds for those i and ¢ that satisfy

~y.
. (F+7)dZ = 1. (40)

Jo

Under (39) and the normalization condition (40), the minimum of the left-hand side of
(36) exists and is attained. when the constraint (38) i1s not in effect, at i and & that satisfy
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L
(ay — )i+ a0 —aui” +2as j Qu+¢)dZ =0,

0

L
d, i+ (d, —1)5/+05J QRu+¢)dZ = B, 4n

0

where o 1s a Lagrange multiplier required by the normalization (40}, and f a constant of
integration resulted from the boundary condition (32) or (34). For the boundary condition
(31) or (33), the constant f§ vanishes.

Since the principal stretches £, and /, are constant for cylindrical deformations, the
coeflicients of various terms in eqns (41) are constant. Further, the terms involving the
integral can be regarded as undetermined constants. Therefore, eqns (41) are a system of
linear ordinary differential equations of constant coeflicients and can be solved by standard
methods. Multiplying (41), by & and (41), by ¢, and integrating the sum, we find that the
left-hand side of (36) equals x at a normalized solution of (41). Under the conditions (39),
the left-hand side of (36) attains a minimum at a solution of (41). Thus, inequality (36)
holds if and only if inequalities (39) hold and x = 0 for all non-trivial solutions (i.e., # and
#’ are not both identically zero) of (41) and appropriate boundary conditions. We shall
denote by x,,, the minimum value of « at which eqns (41) have a non-trivial solution.
Inequality (36) is then equivalent to (39) and «,,, = 0. In what follows, we find «,,, and
hence the stability conditions for twelve cases of different loading devices and boundary
conditions. :

We note that Cases 111 IV, VII, VIII, XTI and XII below have been studied by Shield
(1972), who examined the strict inequality (36). Some of the stability conditions obtained
below agree with his. There are, however, some differences because Shield solved eqns (41)
with o = 0 and assumed that some stability conditions for a plane sheet under dead loading
are satisfied, while we derive stability conditions strictly from (36).

Case . Pressure control and free ends.

In this case, the boundary conditions are (31) with = 0 in (41), and the potential
function is given by (6) which implies a; = 0. Equation (38) is not in effect. Under (39). the
solution of (41) at & = 2,,, 1s of the form

i=C. =0C,. (42)

Here and henceforth, C; are constants. It then follows that x,,, is the smallest eigenvalue of

the matrix
a, (75
< ) (43)
> dy

Hence, the stability conditions are
a, =0, aa,—ai = 0. (44)

in addition to (39). By comparing (44) with (23) and (25), keeping in mind that a; = 0,
¢, = —1 in the present case. we find that the cylindrical deformation is stable only if
¢2a/0f and ¢V/Cu are nonnegative. Thus, the deformation is unstable if the deformed length
decreases as the axial force increases while holding the pressure constant, or if the deformed
volume decreases as the pressure increases while holding the axial force constant.

We note that the form of the solution of (41) may serve to suggest the type of
perturbation deformations that induce instability. In the present case, functions # and #" in
(42) indicate a cylindrical perturbation. A bulged deformation is unlikely to occur in this
case.

Case 11. Pressure control and axial displacement controlled ends.
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In this case, we need to solve (41) under the boundary conditions (32). The constant
as in (41) is again zero, but § may be non-zero. The solution of (41) at a,,;, is of the form

nZ ) 4
i=C, cosT+C3, v=C3sm~L—. (45)

and x,,, 1s either g, or the smallest eigenvalue of

L’ T (406)

The corresponding stability conditions are (39) and

a =0, a,a;—a§+n2’:a420. 47)

It is obvious that under (39) inequalities (44) imply (47). This means, as we have observed,
that specifying the axial displacements of the ends tends to stabilize the cylindrical defor-
mation. As is clear from (44), (47) and (24), such a stabilizing effect diminishes as L/R
tends to infinity. Also, by comparing (47) with (27) and (28), we find that the cylindrical
deformation is stable only if ¢F/du is nonnegative, that is, the deformed volume is non-
decreasing as the pressure increases while holding the deformed length constant. However,
there is no correlation between the stability conditions and the sign of Jf/éz. This means
that the axial force may be decreasing in the deformed length at a stable deformation.

The solution (45) suggests a half-bulge mode of instability. This appears to be con-
sistent with the present boundary condition, that does not restrict radial displacements at
the ends.

Case I1I. Pressure control and radial displacement controlled ends.

The only difference between this case and Case 1 is that the boundary conditions are
now (33). The solution of (41) at a,,, 1s of the form

. nZ . nZ
u=C, smf, r :Czsmf, (48)

and «,,, i1s given by the smallest eigenvalue of (46). The corresponding stability conditions
are (39) and

=20, aa,—a+—"320. (49)

Under (39), the conditions (49) are weaker than (47) and (44). As discussed above, it is
readily understood that the cylindrical deformation with radial displacement controlled
ends should be more stable than that with free ends. However, it does not seem to follow
from a simple argument that the deformation with radial displacement controlled ends is
more stable than that with axial displacement controlled ends. Also, by comparing (49)
with (23) and (25), we find no correlation between the stability conditions and the parameter
dependences. In particular, unlike Case 1, it is possible to have a stable deformation at
which the deformed length would decrease in the axial force, or the deformed volume would
decrease in the pressure.

With the radial displacements controlled at ends, it is now no longer possible to have
a half bulge as in Case II. Instead, the solution (48) corresponds to a perturbation that is
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symmetric about the mid-point of the length, that may later develop into a deformation
with a bulge at the center.

Case 1V. Pressure control and fixed ends.

We now need to solve (41) under the boundary condition (34). Again, we have a; = 0
in (41), but the constant # can be non-zero. The solution of (41) at «,,, is of the form

i=C(l—coskZ)+C,sinkZ,
8= CylL(1 —coskZ)— (1 —coskL)Z]+ Cy(LsinkZ—ZsinkL). (50)

For such a solution, z is an eigenvalue of

a, +a,k”  a, 1)
a-, a- )

where & satisfies
2(1 —coskL)(a, +ak* —a) —(a, —x)kLsinkL = 0. (52)

The last equation along with the condition that the eigenvalues x of (51) be nonnegative
defines the stability region in the (a,, a5, a;. a4) space. The boundary of this region can be
determined by solving eqn (52) at o = 0, and the equation of vanishing determinant of (51).
A detailed analysis shows that the stability conditions in this case are (39) and

a|+/\'1a4>0. a|a}“a§+k:a;a4>0. (53)

where the parameter k is given by

2n
k=— 54
7 (54)
when a, > 0, and 1s given by the smallest positive solution of the equation
kL a,as kL
t. = - 55
an 5 o2 (5%)

when a, < 0. Itis readily verified that either k > n/L or a,a; —a3 > 0, and hence inequalities
(49) imply (53) under (39). confirming the expected result that the cylindrical deformation
with fixed ends is more stable than that with radial displacement controlled ends. Also, in
the present case, as in Case II. there is no correlation between the stability conditions and
the parameter dependences.

It can be readily shown that the solution (50) corresponds to a perturbation that is
symmetric about the mid-point and may later develop into a bulged deformation.

Case V. Mass control and free ends.

In this case, we have the potential function (7) (or a function ¢( V. ) that satisfies (8))
and the boundary condition (31). The constant f§ in (41) vanishes. The constraint (38) is
again not imposed. The solution of (41) at «,,, is of the form

A nZ . nZ
uzC.cosT»+C3. z*’=C;cosT+C4, (56)

and «,,, is the smallest eigenvalue of the matrices (46) and
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a,+4Las a,+2La
1 5 2 5 ) (57)
a>+2Las  a;+ Las
The corresponding stability conditions consist of inequalities (39), (49) and
a,+4Lac =0, ayay—a>+ Las(a, —4a,+4a;) = 0. (58)

By (8), these inequalities imply (39) and (49), and are implied by (39) and (44). Hence, the
cylindrical deformation in this case is less stable than that in Case 111, but more stable than
that in Case I. The latter statement agrees with our earlier observation, while the former
does not seem to follow from a simple physical argument. There is not a definite implication
relation between (58) and (47). Thus, the cylindrical deformation in the present case may
or may not be more stable than that in Case II. Also, by comparing (58) with (23) and
(25). keeping (8) in mind, we observe that, similar to Case I, the cylindrical deformation is
stable only if the deformed length is non-decreasing in the axial force, and the deformed
volume is non-decreasing in the mass of the enclosed gas. However, there is no implication
relation between the stability conditions and the sign of ép/du, meaning that it may not be
necessary in the present case that the pressure be non-decreasing in the mass at a stable
deformation.

The solution (56) again represents a half-bulge perturbation.

Case VI. Mass control and axial displacement controlled ends.

We now need to solve equations (41) subject to the boundary condition (32). The
parameter f§ in (41) may be non-zero. The solution at «,,, is of the form (45), and «,,,, is
either a,+4La; or the smallest eigenvalue of (46). The corresponding stability conditions
are (39), (49) and

a, +4La; = 0. (59

This set of inequalities are found to imply (39) and (49), but are implied by (39) and (47).
and by (39). (49) and (58). Thus, a cylindrical deformation in this case is more stable, as
expected, than that in Cases Il and V., but is less stable than that in Case IIl. This last
conclusion is again not physically intuitive. A comparison of (59) with (28), with the aid
of (8), shows that at a stable deformation, the deformed volume must be non-decreasing
in the mass, but it is not necessary that the pressure be non-decreasing in the mass, nor that
the axial force be non-decreasing in the deformed length.

Case VII. Mass control and radial displacement controlled ends.

We now need to solve eqns (41) with f = 0, subject to the boundary condition (33).
The solution at «,,,, is of the form

u=C{l—coskZ)+C,sinkZ, "= Cyco8kZ+CysinkZ+Cs. (60)

By going through an analysis similar to that in Case IV, we find that « is again given by an

eigenvalue of (51), and the stability conditions are (39) and (53), with the parameter kK now
being given by (54) when

aya; —as+ Las(a, —4a-+4a;) = 0, (61)

and being the smallest positive solution of

tanki:a;[a,a;—a§+ch5(a,—74a2+4a3)]k_L (62)
2 Las(a, —2a-)" 2

when
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a,a, —as + Las(a, —4a, +4a3) < 0. (63)

Since either k > n/L or a,a, —a3 > 0, the conditions (39) and (53) with k being determined
as above are weaker than (39) and (49). Thus, a cylindrical deformation in this case is more
stable than it is in case III, as expected. The comparison of the solutions of (62) and (55)
is inconclusive, indicating that the cylindrical deformation in the present case may or may
not be more stable than that in Case V. It is also observed that the stability conditions in
the present case are not related to the parameter dependences described in (23) and (25).

Once again, the solution (60) represents a symmetric perturbation.

Case VIII. Mass control and fixed ends.

The only difference between this case and Case 1V is that as is now non-zero (positive).
The analysis in Case 1V remains valid for the present case with the addition of a term
involving a;. The solution of (41) at «,,,,, is again of the form (50), and the stability conditions
are again (39) and (53), with the parameter & being given by (54) if ¢, +4La; > 0. and given
by the smallest positive solution of

tan TR BT (64)
2 as+4Lasas 2

otherwise. The smallest positive solution of (64) is found to be not smaller than those of
(55) and (62) under the condition a,a; —a3> < 0. As a result, the cylindrical deformation in
this case is more stable than those in Cases [V and VII. or in any previous case. Again, the
present stability conditions are not related to the signs of the derivatives of state variables
in (27) and (28).

Case IX. Volume control and free ends.

In this and the remaining three cases, we have eqn (9) and the constraint (10) in effect.
Stability conditions can be derived by solving inequality (36) with a; = 0. subject to the
constraint (38). This can be done by again minimizing the left-hand side of (36) subject to
(38) and the normalization condition (40). yielding

(¢, — i+ a-& —aid” =27, daxii+(a; — 20 =7+ f. (63)

where 7 is a Lagrange multiplier required by the constraint (38). In the present case, the
boundary condition is (31), and f in (65) vanishes. The solution of (65} at %, is of the
form

) nt B . nZ
u:ClcosT+C3, ¢ :C;COS*L**—ZCg, (66)

and x,,, is given either by (¢, —4a.+4a;)/5 or by the smallest eigenvalue of (46). The
corresponding stability conditions consist of inequalities (39), (49) and

a, —4a, +4a, =0. 67)

Since the conditions (39) and (67) are weaker than (39) and (58), the cylindrical deformation
under volume control and the free end boundary condition is more stable, as expected,
than that under mass control or pressure control. But. it is less stable than that with radial
displacement controlled ends even under pressure control, which is again not physically
intuitive. Moreover, it may or may not be more stable than that with axial displacement
controlled ends under pressure or mass control. Comparing (67) with (26), we observe that
at a stable deformation the deformed length is non-decreasing in the axial force : however,
the pressure may or may not be increasing in the controlled volume.

Like in Case V, the solution (66) represents a half-bulge perturbation.

Case X. Volume control and axial displacement controlled ends.
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We need to solve eqns (65) and (38) subject to the boundary condition (32). The
constant § may be non-zero. The solution at o, is of the form (45), and «,,, is the smallest
eigenvalue of (46). The corresponding stability conditions are (39) and (49). Clearly, these
stability conditions are weaker than those in Cases VI and IX, as has been predicted earlier.
Moreover, the present stability conditions are found to be identical to those in Case III. In
other words, the cylindrical deformation under pressure control with radial displacement
controlled ends is equally stable to that under volume control with axial displacement
controlled ends. This appears to be a coincidence with no convincing physical explanation.
Furthermore, the stability conditions are found not related to the parameter dependences
(29). At a stable deformation, the pressure may be decreasing in the volume, and the axial
force may be decreasing in the length.

Case XI. Volume control and radial displacement controlled ends.

We need to solve eqns (65) at f =0, (38), and the boundary conditions (33). The
analysis in this case is parallel to that of Case VIL. The form of solution (60), the matrix
(51) of which the eigenvalues determine «, and the stability conditions (39) and (53) all
remain valid for the present case, with the only difference being that the parameter k in
(51) and (53) 1s now given by (54) when inequality (67) holds, and given by the smallest
positive solution of

kL as(a, —4ar +4a;) kL
an F 2 (@ dax HAa) KL (68)
2 (a- —2ay)" 2

otherwise. Since the smallest positive solution of (68) is not smaller, under (39), than that
of (62), the stability conditions of the present case are weaker than those of Case VII, that
is, the cylindrical deformation in this case is more stable than that in Case VII. A comparison
of the present stability conditions with those in Case VIII does not lead to a definite
conclusion. Further. in the present case, there is no correlation between the stability
conditions and the parameter dependences described in (26).

Case XII. Volume control and fixed ends.

By the earlier observations, we expect the cylindrical deformation to be the most stable
in this case. Indeed, the solution of (65) at #,,,, subject to (38) and the boundary condition
(34) 1s of the form

. . 2nZ 2nZ
i=C,sin—, =C,{1—cos—|. (69)

/ 4ra, \
(1. N a:
: ) (70)
' 145 as !
The corresponding stability conditions are (39) and
4 2 3 4 2
a, + nLa4 20, ajas—a>+ n;fa4 20, (71)

which are weaker than the stability conditions of all the previous cases. Again, the present
stability conditions are independent of the parameter dependences (29).

It is interesting to note that the solution (69) corresponds to a perturbation with a
bulge in one half of the length, and a shrink in the other half. We attribute this seemingly
unusual feature to the boundary condition (12) and (22),, which requires increasing the
boundary radius during the inflation so as to maintain the cylindrical deformation.
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L. pressure, free |———| V. mass, free |———| IX. volume, free

II. pressure, axial |———| VI. mass, axial |————| X. volume, axial

II1. pressure, radial | ————| VII. mass, radial |—————{ XI. volume, radial

IV. pressure, fixed |————| VIII. mass, fixed |————| XII. volume, fixed

Fig. 2. Comparison of stability conditions.

To summarize the above results, we list in Fig. 2 the comparisons of the stability
conditions of all twelve cases. Arrows indicate the implication of stability conditions, and
therefore an increasing direction in stability of the cylindrical deformation.

It is observed that the experiment of pressure control and free ends is the least stable.
Imposing the radial displacement boundary condition appears to be an effective way to
stabilize the cylindrical deformation. Controlling the volume is more effective than con-
trolling the mass in stabilizing the deformation. Imposing the axial displacement boundary
condition also stabilizes the deformation, though not as effective as the radial displacement
boundary condition does. All these stabilizing effects decrease with the ratio R/L, and all
stability conditions converge to (39) and (44) as L/R tends to infinity.

To conclude Part 1 of this paper, we remark that no definite conclusion can be
made on bifurcation from the stability conditions we obtained above. When a cylindrical
deformation becomes unstable, a bifurcation may or may not occur. The solution we
obtained in solving the eigenvalue problem only represents the perturbation that induces
instability. A neighboring non-cylindrical equilibrium deformation may not exist at all. In
this case, the membrane will undergo a dynamic process to reach failure or another
equilibrium state at distance. as is often believed to occur in Case [. On the other hand, a
bifurcation may occur at a neutrally stable deformation. We shall address the bifurcation
issue in Part 11 of this paper.
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